Induction Brazing Carbide to Steel

Objective High frequency induction brazing carbide to steel. Recommended Equipment The recommended equipment for this application is the DW-HF-45KW induction brazing machine with the remote heating station. Materials: Large magnetic steel drill head with carbides. Head is approx. 8” OD x 4” (203.2mm OD x 101.6mm) thick, shaft is 11” (279.4mm) long x 2”(50.8mm) to … Read more

Induction Brazing Carbide To Steel

Objective Induction Brazing carbide to steel parts Equipment DW-HF-15kw Induction Heating Power Supply HLQ custom coil Key Parameters Power: 5.88 kW Temperature: Approximately 1500°F (815°C) Time: 10 sec Materials Coil-  2 helical turns (20 mm ID) 1 planar turn (40 mm OD, 13 mm Height) Carbide-  13 mm OD, 3 mm wall thickness Steel piece– 20 … Read more

Induction Brazing Carbide Onto Steel Part

Induction Brazing Carbide Onto Steel Part Objective Brazing carbide onto steel workpiece Equipment DW-UHF-6KW-III Handheld Induction Brazing Heater Key Parameters Power: 4kW Temperature: Approximately 1500°F (815°C) Time: 16 sec Materials Coil-  2 helical turns (20 mm ID) 1 planar turn (40 mm OD, 13 mm Height) Carbide-  13 mm OD, 3 mm wall thickness Steel piece– … Read more

Induction Brazing Carbide To Stainless Steel

Induction Brazing Carbide To Stainless Steel Shaft With IGBT Heating Units

Objective Brazing a cone shaped carbide to a stainless steel shaft for a digger
Material Cone shaped carbide 1.12” (28.4mm) dia, 1.5”(38.1mm) tall, stainless steel shaft 1.12” (28.4mm) dia and various length, black brazing flux and braze shims
Temperature 1500 ºF (815 ºC)
Frequency 277 kHz
Equipment • DW-UHF-10 kW induction heating system, equipped with a remote workhead containing two 1.0μF capacitors for a total of 0.5μF
• An induction heating coil designed and developed specifically for this application.
Process A three turn helical coil is used to braze the carbide to the shaft. The steel shaft is fluxed and the braze shim placed on top. The carbide tip is fluxed and placed on top of the shim, lining up the countersunk hole in the carbide. The hole is not fluxed because the flux outgases and causes the carbide to build up pressure and attempt to repel from the shaft. Power is applied for 85 seconds for the braze shim to flow and make a good joint.
DAWEI’s customer has a customer who is unhappy with the braze quality of their digger so our customer is looking for a better quality brazing process. DAWEI’s customer is very happy with the sample brazed diggers and the help he received from the Ameritherm lab in developing his brazing process.
Results/Benefits Induction heating provides:
• Rapid localized heating only where needed
• Creates clean, controllable joints
• Hands-free heating that involves no operator skill for manufacturing
• Even distribution of heating

brazing carbide to shaft

 

 

 

 

 

 

induction brazing carbide to shaft

 

 

 

 

 

 

 

brazing carbide to stainless steel shaft

Brazing Carbide To Steel Shank

Brazing Carbide To Steel Shank with Induction

Objective :Brazing carbide teeth to a steel jaw in less than 5 minutes
Material: Steel pipe jaw, 0.5” (12.7mm) dia, 1.25” (31.75mm) long, 0.25”(6.35mm) thick carbide teeth, black flux and silver copper braze shims
Temperature: 1292ºF (700ºC)
Frequency: 300kHz
Equipment • DW-UHF-10kW induction heating system, equipped with a remote workhead containing one 0.66μF capacitor
• An induction heating coil designed and developed specifically for this application.
Process: A two turn rectangular helical coil is used to heat the carbide and steel to 1292ºF (700ºC) for 4 to 5 minutes. Three braze shims control the amount of braze and the even heat allows for
a good flow of braze creating an aesthetically pleasing bond.
Results/Benefits Induction heating provides:
• Hands-free heating that involves no operator skill for manufacturing
• Consistent, repeatable aesthetically pleasing brazes
• Even distribution of heating

Induction Brazing Carbide

Induction Brazing Carbide File

Objective: Induction Brazing carbide rotary file assemblies with uniform concentricity in an aerospace application

Material • Carbide blank • High speed steel shank • Temperature indicating paint • Braze shim and black flux

Temperature 1400°F (760°C)

Frequency 550 kHz

Equipment: DW-UHF-4.5kw induction heating system, equipped with a remote heat station containing two 0.33 μF capacitors (total 0.66 μF) An induction heating coil designed and developed specifically for this application.

Process A multi-turn helical coil is used. The part is heated to determine the time required to reach the desired temperature and required heat pattern. It takes approximately 30 – 45 seconds to reach 1400°F (760°C) depending on the various part sizes. Flux is applied to the entire part. A braze shim is sandwiched between the steel shank and carbide. Induction heating power is applied until the braze flows. With proper fixturing, concentricity of the part can be achieved.

Results/Benefits • Repeatable, consistent precise heat.

 

=